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The spin state of holes confined in single InAs quantum dots have recently emerged as a promising system
for the storage or manipulation of quantum information. These holes are often assumed to have no mixing
between orthogonal heavy-hole-spin projections �in the absence of a transverse magnetic field�. The same
assumption has been applied to InAs quantum dot molecules formed by two stacked InAs quantum dots that
are coupled by coherent tunneling of the hole between the two dots. We present experimental evidence of the
existence of a hole-spin-mixing term obtained with magnetophotoluminescence spectroscopy on such InAs
quantum dot molecules. We use a Luttinger spinor model to explain the physical origin of this hole-spin-
mixing term: misalignment of the dots along the stacking direction breaks the angular symmetry and allows
mixing of the heavy-hole components through the light-hole component of the spinor. We discuss how this
spin-mixing mechanism may offer new spin manipulation opportunities that are unique to holes.
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I. INTRODUCTION

An electron excited across the band gap of a semiconduc-
tor quantum dot �QD� leaves behind a hole in the otherwise
full valence states. This hole behaves like a charged particle,
much like the electron, though with a substantially larger
effective mass. Because the valence states are derived from
p-type atomic states of the lattice, a hole experiences a
strong spin-orbit �SO� interaction that leads to a new spin
basis in which the low-energy hole state has total angular
momentum J=3 /2. Because light-hole �LH� states �Jz
= �1 /2� are shifted to larger energy by confinement and
strain, it is often a good approximation to treat low-energy
holes in QDs as if they have only heavy-hole �HH� �Jz

= �3 /2� character with a pseudospin 1
2 . This simple picture

has proven to be remarkably useful and explains a wide va-
riety of optical and magneto-optical properties of quantum
dots.1,2

Here we present experimental evidence of mixing be-
tween HH spin projections in coupled quantum dots at cer-
tain resonant values of the electric and magnetic fields. The
mixing is observed in the optical spectra of stacked pairs of
self-assembled InAs quantum dots near the applied electric
field that induces coherent hole tunneling between the QDs.
Spin mixing between bright and dark exciton spin configu-
rations causes dark states to gain optical intensity, which we
have observed in a number of cases. We present an example
in which the spin mixing is sufficiently large that we can
directly observe anticrossings between bright and dark exci-
ton states and measure the mixing between opposite heavy-
hole-spin projections.

In Sec. II we present the energy levels for the neutral
exciton states of a coupled pair of QDs and describe the
expected bright and dark state energy levels and interactions
in the absence of hole-spin mixing. This section summarizes
the previously discovered g-factor resonance and reversal of
the bonding and antibonding molecular-orbital states, which
are necessary to understand the results presented here.3,4 In
Sec. III we present experimental evidence of the appearance

of bright-dark anticrossings and show that the experimental
data can be phenomenologically explained by the presence
of hole-spin mixing. In Sec. IV we use a Luttinger spinor
model to explain how the spin mixing can arise when mis-
alignment of the QDs along the stacking axis breaks the mo-
lecular symmetry. A complete description of the theoretical
model can be found in Appendix A, including a derivation of
the effective Hamiltonian used to model the experimental
data. In Sec. V we summarize our observation and explana-
tion of the origin of hole-spin mixing.

In Sec. VI we calculate the purity of the hole-spin states
as a function of applied electric field and show that the
heavy-hole states remain very pure away from the electric
field of tunnel coupling. The well isolated spin projections
and lack of a significant contact hyperfine interaction with
nuclear spins makes the HH spin projection a good candidate
for the storage of quantum information.5,6 To build a quan-
tum information processing device around hole spins, how-
ever, it is necessary to have optical or electrical mechanisms
for coherently creating and manipulating superpositions of
orthogonal spin projections.7–9 The spin-mixing mechanism
presented here presents new opportunities for such control
over hole-spin projections. We note that an electron-spin-
mixing anticrossing was previously measured and used for
optical spin control.10 The hole-spin anticrossing energy
measured here is an order of magnitude larger.

II. ENERGY LEVEL STRUCTURE OF THE NEUTRAL
EXCITON

A. Anticrossing spectroscopy: Spin-conserving tunneling

When two InAs QDs are stacked on top of one another,
electrons or holes can tunnel between the two dots to create
quantum dot molecules �QDMs�.11 In general the tunnel cou-
pling is weak because the natural distribution of dot size,
shape, and alloying leads to different confined energy levels
in each dot. An electric field applied along the growth direc-
tion can tune the energy levels into resonance to enable co-
herent tunneling of electrons or holes between the dots and
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the formation of delocalized states with molecular-orbital
character.12 We measure the energy levels of excitonic states
in QDMs using magneto-optical spectroscopy, as described
in previous publications.13 The experimental signature of the
delocalized molecular orbitals is the formation of an anti-
crossing between photoluminescence �PL� lines that come
from direct �electron and hole in the same quantum dot� and
indirect �electron and hole in different quantum dots� states.
Figure 1�a� shows a calculation of the energy levels and an-
ticrossings for the neutral exciton �X0: one electron and one
hole� in a QDM where the dots are separated by a 4 nm
barrier and the hole tunnels between dots. Direct and indirect
states are labeled.

To denote the spatial locations of the electrons and holes
we use the notation �

eBeT

hbhT
�, where eB �eT� are the spins of the

electrons in the bottom �top� dot and similarly for holes. This
notation describes the states far away from an anticrossing.
At the anticrossings, the molecular states can be described as
symmetric and antisymmetric combinations of these basis
states. If we make the usual assumption that holes have only
HH character �Jz= �3 /2�, there are four possible pairings of
the electron-spin and hole-spin projections in a neutral exci-
ton. We use ↑ and ↓ to indicate the electron-spin projection
�Se= �1 /2�, and ⇑ and ⇓ to indicate the HH spin projection
�Jz= �3 /2�. The two spin pairings ↑⇓ and ↓⇑ have exciton
angular momentum �1 and can couple to photons. These
exciton spin configurations are called bright states. The other
two spin configurations �↑⇑ and ↓⇓� have exciton angular
momentum �2 and are called dark excitons because they do
not couple to photons. One set of bright and dark states are
labeled in Fig. 1�a� using our notation. The direct bright and
dark states are split due to the symmetric electron-hole ex-
change interaction. This interaction is suppressed when elec-
trons and holes are in separate dots and thus the indirect
bright and dark states are degenerate.14 In a typical experi-
mental spectra, only the bright states are evident.

In the absence of a magnetic field or hole-spin mixing,
orthogonal electron-spin and hole-spin projections are de-
generate. In this work we ignore the small mixing be-

tween the two bright states that arises from the anisotropic
exchange interaction.15 The two bright exciton spin con-
figurations are thus degenerate and only the electron-spin-
down configuration is labeled in Fig. 1�a�. One anticrossing
is observed where the direct and indirect bright exciton
spin configurations would be expected to intersect �the upper
anticrossing in Fig. 1�a��. Another anticrossing is observed
for the dark exciton states �lower anticrossing�. Tunnel cou-
pling, anticrossings, and spin interactions of electrons and
holes in both neutral and charged excitons have been
observed.13,14,16,17 In this work we focus on the tunnel cou-
pling of holes in the neutral exciton state, as depicted in Fig.
1�a�.

B. Magnetic field: g-factor resonance

When a longitudinal magnetic field is applied �Faraday
geometry: parallel to the optical axis�, the natural expectation
is that a Zeeman splitting between the two bright exciton
configurations will be observed, with a splitting proportional
to the sum of the electron and heavy-hole g factors. How-
ever, in QDMs where holes tunnel the formation of molecu-
lar orbitals substantially alters the hole g factor.3,4,8 Conse-
quently, the hole g factor depends on the applied electric
field and strong resonant enhancement or suppression of the
Zeeman splitting is observed at the electric field of
coupling.3

In Fig. 1�b� we show the calculated energies of the bright
states from Fig. 1�a� when a magnetic field of 6 T is applied.
The first effect of the magnetic field is a Zeeman splitting of
the two bright states that were degenerate in Fig. 1�a�. This is
seen most clearly at the edges of Fig. 1�b�: the degenerate
lines at +0.1 meV in Fig. 1�a� split and move to −0.3 and
+0.5 meV. The second effect of the magnetic field is the
introduction of a g-factor resonance. The g-factor resonance
is seen most clearly by looking at the anticrossings. The
degenerate anticrossings in Fig. 1�a� have an anticrossing
gap of 214 �eV. In Fig. 1�b�, the anticrossing gap for the
lower Zeeman branch expands to approximately 400 �eV
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FIG. 1. �Color online� �a� Energy levels of bright and dark exciton states in a QDM at B=0 T. ��b� and �c�� Energy levels of �b� bright
states and �c� bright and dark states at B=6 T. Black �red/gray� lines indicate optically bright �dark� exciton states.
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while the anticrossing of the upper Zeeman branch collapses
to approximately 30 �eV.

The difference in anticrossing energies arises because dif-
ferent molecular orbitals have different g-factor contribu-
tions from the barrier, which determine the net hole g
factor.3,4 The two lower energy molecular states �one for
each bright electron-hole-spin orientation� have antisymmet-
ric �noded� orbital character �lower inset to Fig. 1�b��. The
node in the molecular wave function suppresses the contri-
bution of the GaAs barrier to the net hole g factor. Because
the barrier hole g factor is positive, suppression of this con-
tribution increases the relative weight of the negative
g-factor contribution from the InAs QDs. The increase in the
magnitude of the g factor �more negative� causes the Zeeman
splitting of the two antisymmetric �noded� molecular orbitals
to increase on resonance. Conversely, the higher energy mo-
lecular states have symmetric �nodeless� orbital character
�upper inset�. The contribution of the barrier is thus enhanced
on resonance, offsetting the negative contribution from the
InAs QDs and reducing the Zeeman splitting of these two
lines. The combination of the enhanced Zeeman splitting for
one molecular branch and suppressed Zeeman splitting for
the other branch leads to the different anticrossing energies.
In Fig. 1�c� we plot the energies of both the bright and dark
exciton states including the Zeeman splitting and the reso-
nant changes in g factor. In the absence of hole-spin mixing
there are no anticrossings where bright and dark states inter-
sect.

C. Reversal of the symmetric and antisymmetric states

The counterintuitive antisymmetric �noded� character of
the molecular ground states in Fig. 1�b� is a consequence of
the spin-orbit interaction, which mixes HH and LH states.4

When the barrier separating the QDs is thin, the molecular
ground state has bonding �symmetric� orbital character and
the first molecular excited state has antibonding �antisym-
metric� character, in analogy with natural diatomic mol-
ecules. As the thickness of the barrier is increased �to 4 nm in

Fig. 1�, the contribution of the LH states becomes more im-
portant and leads to the reversal of the orbital character. The
reversal provides one indication that LHs cannot be ne-
glected in QDMs. To include LHs, hole states are described
as Luttinger spinors that contain all four projections of Jz,
though each spinor is dominated by a single HH spin
projection.18 As we describe below, the mixing that leads to
the reversal of symmetric and antisymmetric orbital states
does not result in mixing between these HH spin projections
and consequently cannot explain the appearance of bright-
dark anticrossings. However, if misalignment of the dots
along the stacking axis breaks the symmetry of the QDM, at
electric fields near the point of tunnel coupling the spin-orbit
interaction combines with the broken symmetry to permit
mixing of spinors with different HH spin components.

D. Experimental modeling: Matrix Hamiltonians

To calculate model spectra we use matrix Hamiltonians,
which have been shown to provide an accurate phenomeno-
logical model of tunneling, spin interactions, and resonant
changes to g factor in a wide variety of samples.3,4,13,14,16,19,20

The basis states are the possible spatial and spin distributions
of the electron and hole. When an electric field is applied, the
lowest electron energy level in the top dot is at significantly
higher energy than the confined electron energy level of the
bottom dot and the states with the electron in the top dot can
be neglected. We can describe the basis states in our nota-
tion, �

eBeT

hbhT
�, with holes denoted by the dominant HH spin

projection. Using this notation, the basis states of the Hamil-
tonian are

�↓ 0

⇑ 0
� �↓ 0

0 ⇑ � �↓ 0

⇓ 0
� �↓ 0

0 ⇓ � . �1�

Note that only the electron-spin-down case is shown be-
cause the overall matrix is block diagonal for the two
electron-spin projections. The first two states are bright ex-
citons and the second two dark excitons. The Hamiltonian
that describes the energy of the neutral exciton state is

+ �0 +
�BB�ge + ghB�

2
− tX0 +

�BBg12

2
0 − hm

− tX0 +
�BBg12

2
− dF +

�BB�ge + ghT�
2

hm 0

0 hm − �0 +
�BB�ge − ghB�

2
− tX0 −

�BBg12

2

− hm 0 − tX0 −
�BBg12

2
− dF +

�BB�ge − ghT�
2

, �2�

where �0 is the electron-hole exchange interaction that splits
bright and dark states when the electron and hole are in the
same dot. �B is the Bohr magneton, B is the magnetic field.
ge is the electron g factor in the bottom dot. ghB �ghT� is the
g factor for a hole in the bottom �top� dot. tX0 is the tunneling

matrix element. d is the effective barrier thickness, which
determines the slope of the indirect lines when the electric
field, F, is applied. hm is the hole mixing term, which is set
to zero for the calculations in Fig. 1. An analogous mixing
term for the electron-spin flip is neglected because we have
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found experimentally that it is below the resolution of the
current experiment. g12 is the resonant contribution to the g
factor from the barrier, which has opposite sign to gh.4 The
relative signs of tX0 and g12 ensure that the bonding orbital
has a decreased splitting. Here tX0 �0 because the molecular
ground state has antibonding character.

The energies of the neutral exciton states are calculated by
finding the eigenvalues of the matrix at a specific value of
the field, F. Because the final state after optical recombina-
tion contains no particles, the energies of the neutral exciton
initial states are exactly the energies of the observed PL
lines. The optical intensities are calculated by multiplying
the corresponding eigenvector by an optical intensity vector,

�
1

Ind/�2

0

0
	 , �3�

which simply gives unit intensity to the direct transition
�electron and hole in the same dot� and a fraction of that

intensity �Ind� to the indirect transition �electron and hole in
different dots�. The dark states have no optical intensity. In
the calculations, therefore, any optical intensity for dark
states must come from mixing with bright states.

III. EXPERIMENTAL EVIDENCE OF HOLE-SPIN MIXING

Figures 2�a� and 2�d� display calculated spectra of the
anticrossings of the X0 state at B=0 and 6 T. These calcula-
tions use the same parameters as Fig. 1 but include a color
mapping to display the optical intensity of the lines. The
calculated spectra in Figs. 2�a� and 2�d� are representative of
the observed behavior for the anticrossing of the neutral ex-
citon in most samples. However, we have observed a number
of QDMs where the dark states gain optical intensity in the
vicinity of the anticrossing region. This intensity gain cannot
be explained with any of the previously observed QDM
properties, including spin-conserving tunneling and molecu-
lar g-factor resonances. Figures 2�b� and 2�e� shows experi-
mental data for a QDM where the dots are separated by a 4
nm tunnel barrier. In this example, not only do the dark states

Experimental DataCalculation: hm=0 Calculation: hm=0.092

a b c

d e f

1 kV / cm

0.5 meV

10

1
2

7

89

1 kV / cm

1 meV 6
3

45

FIG. 2. �Color online� �b� Experimental and ��a� and �c�� calculated photoluminescence spectral map of the neutral exciton at B=0 T �a�
without and �c� with phenomenological hole-spin-mixing term. ��d�–�f�� Spectral maps as in �a�–�c� with B=6 T. Scales for panels �a�–�c�
are the same and are indicated in panel �a�, similarly for �d�–�f�. Callout numbers are referenced in the text.
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gain optical intensity, we also observe new anticrossings be-
tween bright and dark states at high magnetic field. These
anticrossings allow us to directly measure the magnitude of
the spin mixing and to show that it is responsible for the dark
state intensity. In the zero magnetic field case �Fig. 2�b�� the
new anticrossing with the dark exciton state is indicated by
callout 1. At B=6 T �Fig. 2�e�� a complex pattern of addi-
tional anticrossings �callouts 3–6� appear near the electric
field of the tunnel resonance. We will show that all of the
additional anticrossings can be explained by the inclusion of
the hole-spin-mixing term, hm in Eq. �2�, which couples
bright and dark exciton states.

The calculations in Figs. 2�a� and 2�d� are obtained with
numerical values determined by the experimental data in
Figs. 2�b� and 2�e� with the hole-spin-mixing term �hm� set
to zero �see Appendix B�. It is clear that when the hole-spin-
mixing term is set to zero the phenomenological Hamiltonian
�Figs. 2�a� and 2�d�� does not capture all of the features that
appear in the experimental data. However, as shown in Figs.
2�c� and 2�f�, all of the dark states and anticrossings in the
experimental spectra are explained if we turn on the hole
mixing term. Best agreement with the data is obtained when
hm=92 �eV and tX0 =20 �eV, and all other parameters
have the same value as in Figs. 2�a� and 2�d�. The signs and
locations of the hm terms in the phenomenological matrix
Hamiltonian �Eq. �2�� are derived from the full k · p theory, as
shown in Appendix A. The suppression of tX0 is predicted by
the theory and is discussed further below.

Without the hole-spin-mixing term, bright and dark exci-
ton configurations are independent. In this sample the intra-
dot �direct� dark exciton configurations typically lie about
200 �eV below the bright exciton configurations.36 The an-
ticrossing observed in Fig. 2�a� occurs between the direct
and indirect bright exciton states. Spin-conserving tunneling
also couples the direct and indirect dark exciton states but no
signature appears in the PL spectra because the dark states do
not couple to photons. The hole-spin-mixing term allows the
spin-up hole in the bottom dot to mix with the spin-down
hole in the top dot. This coupling mixes bright �e.g., ↓⇑� and
dark �e.g., ↓⇓� exciton states and creates anticrossings where
these bright and dark exciton states would cross. The eigen-
states with mostly dark exciton character gain optical inten-
sity near the anticrossings because they contain nonzero
bright exciton components as a result of the mixing.

In Fig. 2�b�, callout 1 points out the dark exciton states
that have gained optical intensity in the experimental spectra.
In Fig. 2�c�, callout 2 indicates that the inclusion of the hole-
spin-mixing term in the phenomenological Hamiltonian
leads to the dark exciton states gaining optical intensity. The
direct dark exciton state, � ↓,0

⇓,0 �, is no longer an eigenstate of
the system. As a result of the hole-spin mixing, the new
eigenstate includes a nonzero contribution from the indirect
bright exciton state, � ↓,0

0,⇑ �. It is this bright component that
gives the eigenstate optical intensity. The appearance of the
dark state at zero magnetic field cannot be explained without
the hole-spin-mixing term.

When a magnetic field is applied, both bright and dark
exciton configurations undergo a Zeeman splitting. In the
absence of hole-spin mixing the bright and dark states simply
cross and the dark states remain dark �Fig. 2�d��. In the pres-

ence of hole-spin mixing, each crossing of bright and dark
states becomes an anticrossing observable in the experimen-
tal spectra. Callout 3 in Fig. 2�e�, for example, is an anti-
crossing between a direct dark and an indirect bright exciton
state. We can directly measure the magnitude of this anti-
crossing gap �180 �eV� to determine the magnitude of the
spin-mixing term. Figure 2�f� shows that the inclusion of the
spin-mixing term explains the additional anticrossings ob-
served in the experimental spectra. The anticrossings indi-
cated by callouts 7 and 8 arise from the anticrossing of the
indirect bright, � ↓,0

0,⇑ �, and direct dark, � ↓,0
⇓,0 �, excitons. These

calculated anticrossings correspond to the observed anti-
crossings indicated by callouts 3 and 4 in Fig. 2�e�. The
anticrossings indicated by callouts 9 and 10 arise from anti-
crossings between the direct bright, � ↓,0

⇑,0 �, and indirect dark,
� ↓,0

0,⇓ �, states and correspond to the observed anticrossings in-
dicated by callouts 5 and 6 in Fig. 2�e�. The explanation of
all of these complex anticrossing patterns by the inclusion of
a single term in the matrix Hamiltonians provides strong
phenomenological evidence for the existence of hole-spin
mixing. In the next section we will address the physical ori-
gin of such a mixing term in the misalignment of QDs along
the stacking axis.

The phenomenological matrix Hamiltonians we use have
a reduced capacity to make quantitative predictions in the
case of hole-spin mixing. In typical QDMs that do not show
hole-spin mixing, it is possible to measure each parameter
independently in order to construct a quantitatively reason-
ably matrix Hamiltonian or to fit a single undetermined pa-
rameter. In this case, the hole-spin mixing is of the same
order of magnitude as spin-conserving tunneling, electron-
hole exchange, and the resonant change in g factor. In Ap-
pendix B we describe our method for systematically deter-
mining quantitative values for each term. However, because
many terms are of the same order of magnitude, it is impos-
sible to obtain a quantitative fit to all parameters simulta-
neously. This limitation manifests in the suppression of the
spin-conserving tunneling rate tX0. Lateral offset between the
QDs is expected to suppress the tunneling rate and the rever-
sal of molecular orbitals predicts that the tunneling rate
should be very small for barrier thicknesses near those of this
sample.4 Similarly, the k · p theory predicts the suppression of
the tunneling rate. Our fit value of tX0 =20 �eV is consistent
with these predictions but the exact numerical value is some-
what uncertain due to the limitations of the phenomenologi-
cal matrix Hamiltonian method.

We conclude this section with a discussion of the extent
of the experimental evidence for the presence of the hole-
spin-mixing term. We have observed PL patterns evidencing
hole-spin mixing in the neutral exciton spectra of six other
QDMs for samples with barrier thicknesses of 3 and 4 nm.
All other QDMs we have measured from these samples ex-
hibit some optical intensity from nominally dark excitonic
PL lines. The optical intensity for dark exciton states sug-
gests the existence of hole-spin mixing in these QDMs but
the data are inconclusive because the lines do not approach
each other in a manner that would cause additional anticross-
ings to become apparent. Preliminary work indicates that the
effect is much smaller in a sample with a 6 nm barrier. The
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experimental data presented in Figs. 2�b� and 2�e� provides a
striking and clear example of the contributions of the hole-
spin-mixing term because the tunneling term is unusually
small. This small tunneling rate is consistent with, but not
proof of, a large lateral misalignment between dots.37

IV. PHYSICAL ORIGIN OF THE HOLE-SPIN-MIXING
TERM

Although we can model the observed data with the addi-
tion of a phenomenological spin-mixing term, the question of
the physical origin of such a term remains. In analogy with
single QDs, one might suspect Rashba and Dresselhaus SO
interactions.2,21 However the large magnitude of the spin an-
ticrossing gap in Fig. 2, �
180 �eV, is not consistent with
the high spin purity reported for holes in single QDs.2,5 In-
stead, it seems that the QDM geometry has enabled a new
mechanism leading to strong spin mixing. We propose that
such a mechanism is the SO interaction mediated by LH. In
bulk semiconductors LH are known to couple HH states with
orthogonal spins.22 This effect is small in single QDs because
LH are high in energy.21 In QDMs, however, the small ef-
fective mass of LH causes them to have large tunneling rates.
As a result, bonding LH states are close in energy to the
lowest-lying HH states38 and their influence becomes impor-
tant.

To study the effect of the valence-band SO interaction, we
use the simplest description of hole states including HH-LH
coupling: the four-band Luttinger-Kohn Hamiltonian.22 The
solutions of this Hamiltonian are Luttinger spinors, four
component objects with two HH and two LH components.
The expression of a Luttinger spinor in an ideal QDM,
formed by two identical lens-shaped QDs perfectly aligned
along the stacking axis �Fig. 3�a�� is18,23

�Fz,k� =�
c+3/2fmz

�r�Jz = +
3

2
�

c−1/2fmz+1�r�Jz = +
1

2
�

c+1/2fmz+2�r�Jz = −
1

2
�

c−3/2fmz+3�r�Jz = −
3

2
�	 . �4�

Here �Jz� is the Bloch part of the wave function, f�r� is the
envelope function, and cJz

a numerical coefficient which
gives the weight of each component. The envelope compo-
nents of the spinor have the symmetries of the confining
potential. Since the ideal QDM has circular symmetry, we
can label each of the components by an envelope angular
momentum mz=0, �1, �2, . . . The complete Luttinger
spinor, however, does not have circular symmetry because it
is broken by the valence-band SO interaction. Instead, the
spinor can be classified by the total angular momentum Fz
=mz+Jz and the main quantum number k.

As can be seen in Eq. �4�, the spinor contains a mixture of
⇑ �Jz=+3 /2� and ⇓ �Jz=−3 /2� HH components. Despite this
mixture, the low-lying hole states of a QD ��Fz= �3 /2�� are
dominated by the HH with mz=0. In typical InAs QDMs,
one HH spin component makes up over 95% of the ground-
state weight, with small contributions from the LH compo-
nents �less than 5%� and the HH component with opposite
spin �less than 0.1%�. One can then identify the �Fz=+3 /2�
and �Fz=−3 /2� spinors with the ⇑ and ⇓ HH of the usual
single-band description.

To show that the weak mixture of HH spins within the
spinor of a circularly symmetric QDM is not responsible for
the features observed in Fig. 2, we calculate the low-energy
hole states of an ideal InAs/GaAs QDM subject to a longi-
tudinal magnetic field of B=6 T �see Appendix A for calcu-
lation details�. The resulting energy spectrum is plotted in
Fig. 4�a�. The �Fz ,k� symmetry of the states is indicated
along with the spin of the dominant HH component of each
spinor. In the figure we see anticrossings at resonant electric
fields �Ez
0 kV /cm�, where states with the same Fz mix to
form bonding and antibonding molecular states. These anti-
crossings correspond to the spin-conserving tunneling ob-
served in typical experimental spectra. In addition, Fig. 4�a�
shows crossings between levels with different Fz �different
pseudospin�. These states cross �rather than anticross� be-
cause the SO interaction does not mix states with different
Fz. These crossings, however, occur between the states that
anticross in both the experimental spectra and the phenom-
enological calculations that include the spin-mixing term hm
�Fig. 2�. The absence of anticrossings at these points in Fig.
4�a� demonstrates that the inclusion of the SO interaction is
not sufficient to explain the new experimentally observed
anticrossings.
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FIG. 3. �Color online� Schematic depiction of lens-shaped QDs
in �a� an ideal QDM with no misalignment and �b� a QDM with
misalignment. �c� Cross-sectional STM image of vertically stacked
InAs QDs showing misalignment. �d� Histogram of measured off-
sets between QD centers in a sample of 24 QDMs.
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In order to obtain anticrossings that match the experimen-
tal spectra, the Fz symmetry must be broken. The total angu-
lar momentum symmetry can be removed by structural dis-
tortions breaking the circular symmetry of the QDM. The
distortion could be dot eccentricity, which is often present in
Stranski-Krastanov grown QDs.24 However, our simulations
�not shown� indicate that eccentricity only weakly mixes
states with different Fz and the anticrossing gaps it produces
never reach the large experimental value. Instead we con-
sider a lateral offset between the QDs which form the QDM,
as shown in Fig. 3�b�. QDM misalignment efficiently re-
moves the circular symmetry at resonant electric fields, lead-
ing to a strong mixing of states with different Fz and, as we
show below, to spin anticrossing gaps comparable to those of
the experiment.

The effect of misalignment is illustrated in Fig. 4�b�,
where we plot the hole energy spectrum for the same QDM
as in Fig. 4�a� but now including a lateral offset of 3 nm. One
can see that the presence of misalignment introduces the ex-
pected anticrossings between states with opposite pseu-
dospin.

The inset in Fig. 4�b� shows the magnitude of the anti-
crossing gap between states with different pseudospin, �, as
a function of the lateral offset. InAs QDMs with different
interdot barrier thickness are considered.39 � increases lin-
early with the offset and for 5 nm it may reach values of
200 �eV, which are comparable to the value observed in the
magnetophotoluminescence spectra of Fig. 2. The inset also
reveals that the effect of the barrier thickness �d� and height
�valence-band offset� is important. In general, the weaker the
tunneling, the smaller the anticrossing gap �compare, e.g.,
d=1.7 and 6 nm�. This is because the bonding LH states are
farther in energy and their influence decreases. The nature of
the hole molecular state is also relevant. At d=1.7 nm the
calculated ground state is bonding but it switches to anti-

bonding at d=1.8 nm. The antibonding ground state con-
tains a larger admixture of spinor components,18 which ex-
plains the drastic increase in anticrossing gap as a result of a
small increase in barrier thickness.

To further support misalignment as the origin of the phe-
nomenological spin-mixing term of Eq. �2� we show that the
inclusion of lateral offset in the k · p theory introduces anti-
crossings between exactly the same states that anticross
when the spin-mixing term is included in the phenomeno-
logical Hamiltonian. In Fig. 5 we compare the exciton emis-
sion spectrum calculated with the phenomenological Hamil-
tonian �top row� and k · p theory �bottom row�. The
parameters of the phenomenological Hamiltonian are the
same as in Fig. 2 but the resonant g factor and electron-hole
exchange have been neglected for simplicity. Because these
terms have been neglected, the results should not be com-
pared with Fig. 2�f�. Figures 5�a� and 5�c� correspond to the
system with hm=0 �phenomenological� and no lateral offset
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FIG. 4. �Color online� Hole energy levels vs electric field at B
=6 T, calculated with k · p theory: �a� no misalignment and �b�
misaligned QDM with 3 nm lateral offset. In �a� we indicate the
�Fz ,k� quantum numbers and the pseudospin. Note that the states
with opposite spin cross �anticross� in the absence �presence� of
misalignment. The inset in �b� shows the magnitude of the spin
anticrossing gap as a function of the lateral offset for various inter-
dot barriers.
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�k · p�. Panels �b� and �d� correspond to the system with hm
=0.02 meV and 3 nm offset, respectively. As highlighted by
the dashed circles, the inclusion of finite hm and finite offset
introduces anticrossings at the same positions.40 This
strongly supports our conclusion that lateral offset is respon-
sible for the phenomenological spin-mixing term.

A detailed derivation of the spin-mixing term hm in terms
of the k · p matrix elements induced by the misaligment po-
tential can be found in Appendix A. It follows from the
analysis that the proximity of LH states plays a critical role
in the spin mixing of HH. The direct coupling between
�3 /2,1� and �−3 /2,2� states is small because these two states
are essentially HHs localized in opposite dots at the electric
fields where the intersections occur. The coupling is mostly
mediated by the excited states with Fz= �1 /2, which con-
tain sizable LH components and are hence delocalized over
the QDM for the entire range of electric fields under study.
This allows them to couple the two “HH” states efficiently. A
diagram summarizing the coupling is shown in Fig. 6. To
illustrate the localization of the states, in-plane and vertical
parts of the spinor envelope components are written sepa-
rately. B �T� indicates localization in the bottom �top� dot
while �B�T� indicates bonding and antibonding delocalized
states. Mixing occurs between states with the same Jz. As
indicated by the solid color arrows in Fig. 6, the mixing
proceeds in two steps. The first step involves coupling of a
“HH” localized in one dot with a delocalized “LH” state. The
second step is the coupling of the “LH” with the “HH” lo-
calized in the other QD. Eventually, at strong magnetic
fields, the mixing may also proceed through a three-step pro-

cess involving coupling between the two “LH” states �two-
color arrow�; see Appendix A for further details.

Our computations indicate that a lateral offset of 5 nm is
required to produce a hole-spin-mixing term with the mag-
nitude observed in Fig. 2. It is impossible to measure the
offset in the particular QDM for which the data of Fig. 2 are
obtained but the required offset can be compared to statistics
of other QDMs. In Fig. 3�c� we show cross-sectional scan-
ning tunneling microscopy �XSTM� data of vertically
stacked InAs QDs showing a lateral offset along the stacking
axis. In Fig. 3�d� we present a histogram of the measured
offsets in a study of 24 QDMs measured by XSTM. Figure
3�d� demonstrates that lateral offsets are quite common but
are typically 2 nm or less. We note that our method may
underestimate the offsets because XSTM is sensitive only to
lateral offsets parallel to the cleavage plane. The histogram
in Fig. 3�d� suggests that a 5 nm offset for the QDM whose
PL spectra are presented in Fig. 2 is plausible, though it is at
the upper edge of the distribution. This is consistent with the
observation that the degree of hole-spin mixing in this ex-
ample is unusually large.

V. SUMMARY

We observe optical intensity from dark excitons in a num-
ber of QDM samples. This dark exciton optical intensity can
be phenomenologically explained by the presence of hole-
spin mixing. We have presented an example in which the
hole-spin mixing is sufficiently large and the tunneling suf-
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ficiently small that bright-dark exciton anticrossings can be
directly observed and measured. We have used a phenom-
enological matrix Hamiltonian to demonstrate that the inclu-
sion of hole-spin mixing qualitatively explains all of the new
anticrossings in the experimental data. We have then used a
k · p theory to show that molecular symmetry breaking in the
form of QD lateral offset changes the mixing of HH and LH
states and enables the same form of hole-spin mixing. The
combination of experimental evidence and k · p theory lead
us to the conclusion that hole-spin mixing can occur in
QDMs as a result of symmetry breaking.

A quantitative understanding of the spin-mixing term will
require detailed experiments in which the molecular symme-
try can be broken in a quantifiable way. It will also require
the development of more sophisticated theory and modeling
techniques to quantitatively determine the magnitude of spin
mixing and its dependence on molecular structure and sym-
metry. The experimental evidence and k · p theory we present
suggest that there is a rich regime of spin physics to be
explored in QDMs. In the final section we discuss the impli-
cations of hole-spin mixing for device applications.

VI. IMPLICATIONS OF HOLE-SPIN MIXING

As discussed earlier, the low-lying hole states with Fz
= �3 /2 have a strongly dominant HH component and hence
can be assigned a pseudospin. However, at the electric fields
where the anticrossings induced by misalignment occur,
these states mix with other spinors with opposite pseudospin.
To quantify the effect of such mixing on the spin purity, in
Fig. 7 we plot the expectation value of the hole pseudospin
Sh for the first and second molecular excited states of Fig. 4
�i.e., the states that are a mixture of �Fz=+3 /2,1� and �Fz=
−3 /2,2�� as a function of the applied electric field. �Sh� is
evaluated from the weight of the components of the Lut-
tinger spinor as

�Sh� =
1

2
�c+3/2

2 + c+1/2
2 /3 − c−1/2

2 /3 − c−3/2
2 � , �5�

where the factor 1/3 acting upon the LH components comes
from the Bloch function coefficients. Figures 7�a� and 7�b�
correspond to the QDM without and with lateral offset, re-
spectively �as in Figs. 4�a� and 4�b��. One can see that in the
absence of misalignment �Sh� is nearly pure ��1 /2� �Ref.
41� but the inclusion of misalignment severely degrades the
spin purity at electric fields near the spin anticrossing points.

These perturbations in the hole-spin purity further illus-
trate that the HH-only approximation has only limited valid-
ity in QDM. Near the anticrossing points, the effect of
valence-band mixing must be taken into account when de-
signing information storage or manipulations protocols based
on the hole-spin projections. The contributions of the other
spinor components may enable additional decoherence or
dephasing mechanisms that limit the ability to store and ma-
nipulate quantum information, as well as the preparation of
pure spin hole states through the positive trion.5,25 These
mechanisms could be suppressed by minimizing the struc-
tural distortions that break the molecular symmetries or by
designing spin storage and manipulation protocols that are

insensitive to the mixing of additional hole-spin components.
Away from the anticrossing points, the HH spin projections
remain relatively pure and viable for quantum information
storage.

The spin-mixing mechanism we describe here is reminis-
cent of that reported by Ferreira and Bastard26 for single
asymmetric quantum wells. Holes in symmetric quantum
wells have a well-defined pseudospin in spite of the HH-LH
coupling because the parity symmetry prevents undesired
mixing between spinors.23,27 Introducing envelope function
asymmetries that break the parity bring about a D’yakanov-
Perel-type mechanism of spin relaxation.28 In our QDM sys-
tem, the vertical parity symmetry is lifted by the lens-shaped
confinement and the different composition of the dots. Still,
this does not suffice to mix pseudospins because the lateral
confinement, which is obviously absent in quantum wells,
imposes an additional symmetry, namely, circular symmetry.
As a result, the “spin-up” and “spin-down” hole states have
different total angular momenta Fz and they remain orthogo-
nal. In order to mix the orthogonal spin projections, one has
to break the rotational symmetry. As we have shown, this is
most efficiently achieved by the misalignment of the QDM.

The envelope origin of the SO term we report suggests
that it can be controlled with external field and hence used in
a similar fashion to the Rashba term for spintronic
applications.28 Indeed, the magnitude of the spin anticrossing
gaps observed in Fig. 2�e� are comparable to those of elec-
trons in InAs QDMs with strong Rashba interaction.29 This
makes holes in QDMs particularly suitable for electric field-
induced spin manipulation. For example, two orthogonal
spin states of the hole in the bottom QD could provide the
qubit basis. Away from the electric field of tunnel coupling,
the SO-induced hole-spin mixing we discuss here is strongly
suppressed. The spin states are thus well isolated and could
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FIG. 7. �Color online� Expectation value of the hole pseudospin
as a function of applied electric field. Red and blue lines correspond
to the first and second excited states of Fig. 4. �a� No lateral offset.
�b� 3 nm lateral offset. The reversal of red and blue lines in panel
�a� arises when the energy order of the two states reverses and does
not indicate a degradation of hole-spin purity.
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provide a robust means of storing quantum information.2,5 If
the applied electric field were then varied to bring the dots
into the regime where hole-spin mixing becomes strong, the
two spin configurations could be controllably mixed. A de-
tailed examination of the interaction strengths and electric
field pulse sequences required to effect a single qubit rotation
are beyond the scope of this paper, though work by Kim et
al.10 demonstrates that spin mixing in QDMs provides new
tools for spin initialization and readout. If coherent rotation
of the hole spins via gated spin mixing is feasible, such a
scheme would require fewer resources to implement spin
control protocols than current proposals. Spin rotations could
be implemented with only a single applied electric field,
eliminating the need for pulsed lasers tuned to transitions
specific to each dot or GHz frequency fields used to imple-
ment g-tensor modulation resonance rotations of spin
projections.7,8,30,31 At the same time, the QDM structure pre-
serves the opportunity to use optics for spin initialization,
readout, and control of two-qubit operations.

For a quantum memory one needs a resident spin in the
quantum dot, unlike the case of the neutral exciton studied
here �in which the dot is uncharged�. However, an analogous
resonant spin mixing also occurs when the dots are charged.
In fact, we find additional experimental confirmation of the
existence of a hole-spin-mixing term in the magneto-PL
spectra of the positively charged trion �not shown�. The ex-
cited state of the positive trion contains two hole spins,
which can be in a triplet configuration when the holes are in
separate dots. The hole-spin mixing again introduces new
anticrossings in the experimental spectra, in this case be-
tween the triplet states and singlet states that have both holes
in the same dot. The additional anticrossings that appear in
both the neutral exciton and positive trion spectra are en-
abled by the hole-spin-mixing term, which allows spin-flip
tunneling. The spin-flip tunneling can be seen in the phenom-
enological Hamiltonian �Eq. �2��: the hole-spin-mixing term
connects eigenstates that have holes in different dots with
different spin orientations.
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APPENDIX A: THEORETICAL MODEL AND k ·p
DERIVATION OF SPIN-MIXING TERMS

In this appendix we describe the theoretical model em-
ployed for the k · p calculations and then derive an expression
for the spin-mixing operator of Eq. �2�, hm, in terms of the
matrix elements induced by misalignment.

We write the Hamiltonian of the QDM as

H = HLK + VQDM + Voffset. �A1�

Here HLK is the three-dimensional Luttinger-Kohn Hamil-
tonian, including longitudinal magnetic and electric fields.

VQDM is the confinement potential of an ideal QDM, formed
by two vertically stacked lens-shaped QDs �spherical cas-
kets� with perfect alignment �see Fig. 8�a��. The potential is
zero inside the dots and Vo outside. Voffset is the potential
induced by laterally offsetting the QDs. It is the difference
between the potential of misaligned and aligned QDM �see
Fig. 8�b��.

We first obtain the eigenstates of Hsym=HLK+VQDM and
then project the full Hamiltonian H into these states. The
minimal basis set which captures the spin-mixing features of
Eq. �2� is formed by the six lowest-lying eigenstates of Hsym,
namely,

�1� = Fz = −
3

2
,k = 1�, �2� = Fz = −

3

2
,k = 2� ,

�3� = Fz = −
1

2
,k = 1�, �4� = Fz = +

1

2
,k = 1� ,

�5� = Fz = +
3

2
,k = 1�, �6� = Fz = +

3

2
,k = 2� .

The above states are obtained integrating numerically the
Luttinger-Kohn Hamiltonian, written in cylindrical coordi-
nates, with a finite difference scheme.32 The complete Hamil-
tonian H is then integrated using an exact diagonalization
technique. The QDM is constituted by QDs with radius 15
nm, height 2 nm, and the interdot separation is d=1.7 nm
�unless otherwise stated�. We use InAs Luttinger parameters
�1=20.0, �2=8.5, and �3=9.2.33 The valence-band offset is
Vo=200 meV and a constant g factor gh=−1.5 is assumed.

The energy of the Fz= �3 /2 states as a function of the
electric field is represented in Fig. 4�a� for an ideal QDM at
B=6 T. The Fz= �1 /2 states are a few millielectron volt
higher in energy. From the dominant component of the
spinor, one can identify the states �1� and �2� ��5� and �6��
with the ⇓ �⇑ � HHs of Eq. �1�. These states are localized
either in the top or the bottom dot, except for a narrow win-
dow near the resonant field Ez
0 where they form delocal-
ized bonding and antibonding states. On the other hand, the
excited states �3� and �4� have a significant admixture of HH
and LH components. This allows them to be significantly
delocalized for all the values of Ez in the figure, forming
bonding molecular states.42

The exciton calculations of Sec. IV are carried out using
the hole states calculated as described above and electron

a b

FIG. 8. �Color online� �a� Confinement potential of an ideal
QDM. �b� Perturbative potential introduced by QDM misalignment.
Blue and red regions correspond to +Vo and −Vo, respectively.
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states calculated in a similar fashion but with a single-band
effective-mass model.32 The electron mass is m�=0.06, the
conduction-band offset is set to Vo=500 meV and the g fac-
tor ge=−0.6. To mimic the experimental situation, we force
the electron to stay in the bottom QD �a single dot potential
is used�. Electron-hole Coulomb interaction is accounted for
using a configuration-interaction method on the basis of the
Hartree products formed by the electron ground state and the
six lowest hole states. The matrix elements are integrated
using Monte Carlo routines and the exciton emission inten-
sity is computed within the dipole approximation.34

We can obtain a perturbative expression for the spin-
mixing term hm by projecting Hamiltonian �A1� into the
basis of the states �1� to �6�. This yields

�
E1 V12 V13 V14 V15 V16

V12 E2 V23 V24 V25 V26

V13 V23 E3 V34 V35 V36

V14 V24 V34 E4 V45 V46

V15 V25 V35 V45 E5 V56

V16 V26 V36 V46 V56 E6

	 , �A2�

where Ei=�i+Vii, with �i being the energy of the hole state
�i� and Vij = �i�Voffset�j� the matrix element induced by the
misalignment potential, which couples the states �i� and �j�.
The matrix elements are real because Voffset has even parity
along the azimuthal direction.

In order to compare with Eq. �2�, we reduce Hamiltonian
�A2� to an effective 4	4 Hamiltonian on the basis of “HH”
states only ��1� , �2� , �5� , �6��. After some algebra, we obtain

�
�1 + P11 P12 P15 P16

P12 �2 + P22 P25 P26

P15 P25 �5 + P55 P56

P16 P26 P56 �6 + P66

	 , �A3�

where

Pij = Vij + 
�Vi3Vj3�� − E4� + Vi4Vj4�� − E3� + �Vi4Vj3

+ Vi3Vj4�V34� . �A4�

Here � stands for Hamiltonian �A2� eigenvalues and 

= ���−E3���−E4�−V34

2 �−1.
Hamiltonian �A3� shows that, in general, misalignment

mixes all “HH” states, regardless of spin and localization. As
can be seen in Eq. �A4�, the mixing operator contains linear,
quadratic, and cubic terms in Vij. These correspond to direct
mixing, indirect mixing via two-step and three-step pro-
cesses, respectively. The indirect mechanisms occur via the
strongly admixed HH-LH states ��3� and �4��, as illustrated in
Fig. 6. Which of the mechanisms dominates depends on the
states that are mixed and the experimental conditions.

In the absence of magnetic field, a number of relation-
ships allow us to simplify Hamiltonian �A3�. From the

Kramers degeneracy of states with opposite pseudospin, E1
=E5, E2=E6, and E3=E4. Besides, the orbital symmetries
between such pairs of states lead to V12=V56, V23=V46, V13
=V45, V14=−V35, V16=−V25, and V24=−V36. Finally, direct
mixing between states with opposite pseudospin turns out to
be negligible, V16�V25�V34�V15=0. This can be under-
stood from an analysis of the matrix elements. For example,
�1�Voffset�5� reads

�
c+3/2� f−3�r��Jz = +

3

2


c−1/2� f−2�r��Jz = +
1

2


c+1/2� f−1�r��Jz = −
1

2


c−3/2� f+0�r��Jz = −
3

2
 �VoffsetI�

c+3/2f0�r�Jz = +
3

2
�

c−1/2f1�r�Jz = +
1

2
�

c+1/2f2�r�Jz = −
1

2
�

c−3/2f3�r�Jz = −
3

2
�� ,

where I is the identity matrix. While �1� gathers most of its
weight in the Jz=−3 /2 component, which has the lowest
envelope angular momentum �mz=0�, �5� does so in the Jz
=+3 /2 component. Since each component of the bra couples
to that of the ket with equal Jz, the coupling between the two
vectors is negligible.

Using the equalities described above, we can simplify the
Hamiltonian when B=0. Equation �A3� becomes

�
�1 + a t� 0 hm

t� �2 + b − hm 0

0 − hm �5 + a t�

hm 0 t� �6 + b
	 , �A5�

where

a = V11 − �V13
2 + V14

2 �/�E3 − �� , �A6�

b = V22 − �V23
2 + V24

2 �/�E3 − �� , �A7�

t� = V12 − �V13V23 + V14V24�/�E3 − �� , �A8�

hm = − �V14V23 − V13V24�/�E3 − �� . �A9�

Hamiltonian �A5� spans the states �1�, �2�, �5�, and �6�.
These are “molecular” states of the entire QDM. For a
direct comparison with Eq. �2�, it is convenient to rewrite
the Hamiltonian using states localized either in the upper
or bottom QD. We then consider that, at the resonant
electric field, �1���2��= ��hB ,⇑�� �hT ,⇑�� /�2 and �5���6��
= ��hB ,⇓�� �hT ,⇓�� /�2. Projecting Hamiltonian �A5� onto
the basis set formed by �hB ,⇑�, �hT ,⇑�, �hB ,⇓�, and �hT ,⇓�
gives
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�
� + V� + 2t� − �tX0 + toffset� 0 − hm

− �tX0 + toffset� � + V� − 2t� hm 0

0 hm � + V� + 2t� − �tX0 + toffset�

− hm 0 − �tX0 + toffset� � + V� − 2t�
	 , �A10�

where �= ��1+�2� /2 is the energy of the hole localized
in a QD, V�= �a+b� /2 and tX0 = ��2−�1� /2 is the tun-
neling rate in the absence of misalignment and toffset

= �b−a� /2.
By inspecting the effective Hamiltonian �A10�, a number

of conclusions can be drawn. First and foremost, we have
found an expression for the spin-mixing term hm in terms of
misalignment matrix elements, Eq. �A9�. This reveals that
the mixing occurs by indirect coupling through the excited
�Fz= �1 /2� states, following the two-step process shown in
Fig. 6. Indeed, hm is inversely proportional to the energy
splitting between the �Fz= �3 /2� and the excited �Fz

= �1 /2� states. Second, misalignment brings about spin
mixing between “HH” states localized in different QD but
not in the same QD �Eq. �A6� contains no term mixing states
�hB ,⇑� and �hB ,⇓� or �hT ,⇑� and �hT ,⇑��. This is in remark-
able agreement with the phenomenological Hamiltonian fit-
ting the experiment, Eq. �2�. Last, misalignment not only
induces spin mixing but also affects the “HH” energy levels
�through V� and t�� as well as the spin-conserving tunneling
rates �through toffset�. The sign of toffset is opposite to that of
tX0, because �b−a� is mainly given by the difference between
the quadratic components of Eqs. �A6� and �A7�. It then
follows that toffset is a negative correction to tX0, which
supports the quenched tunneling rate �tX0 =20 �eV� used to
fit the experimental spectrum of the strongly misaligned
QDM.

In the presence of a finite magnetic field, Kramers degen-
eracy is lifted and the matrix element equalities which
yielded Eq. �A6� become only approximate. As a result, the
general form of the effective Hamiltonian should be used,
Eq. �A3�. However, the close agreement of Eq. �2� with the
B=6 spectrum of the misaligned QDM, Fig. 2�f�, indicates
that Hamiltonian �A6� is still a good approximation at mod-
erate fields.

APPENDIX B: EMPIRICAL PARAMETERS

The numerical values of the parameters used in the matrix
Hamiltonian are not free fitting parameters. The value of
each parameter can be systematically determined from ex-
perimental data. The tunneling parameter tX0 =−0.107 meV
is determined from the measured zero magnetic field anti-
crossing, assuming that hole-spin mixing is not allowed.
ghB=−1.695 is determined from the Zeeman splitting of the
lower energy line well away from the anticrossing region.
Similarly, ghT=−1.66 is determined from the Zeeman split-
ting of the higher energy indirect line well away from anti-
crossing. ge=−0.6 and �0=0.101 meV are determined from
the asymptotic energies of the dark states. d=5.8 nm is de-
termined from the slope of the indirect-transition energy. B
=6 T is the known value of the applied magnetic field. �B
=0.0579 meV is the Bohr magneton. g12=0.47 is fit to the
data by looking at the higher energy anticrossing, which
shows little affect from the hole mixing. The value for the
hole-spin-mixing term, hm=0.092 meV, is determined by
measuring the new bright-dark anticrossings that are ob-
served in Figs. 2�b� and 2�e�. When hm=0.092 meV is in-
cluded in the calculations �Figs. 2�c� and 2�f��, a new value
of tX0 must be obtained to achieve a good fit. We find that
tX0 =−0.02 meV provides good agreement with the data, par-
ticularly the energy separation between indirect PL lines ob-
served in the center of the anticrossing region of Fig. 2�b�.
The suppression of tX0 when hm is nonzero is intuitively
expected because the lateral offset increases the distance be-
tween the center of the QDs. This suppression of tX0 is pre-
dicted by k · p calculations as described previously. Note
again that the calculations in Fig. 2 use both electron-spin
projections, so the matrix and intensity vector analogous to
Eq. �2� for the electron-spin-up case is also used. A value of
Ind=0.5 is used to generate the calculated spectral maps and
a nonlinear intensity scaling is used to make the indirect
lines clearer for publication.
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